Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Yan Zhang, Wen-Yuan Gao* and Hai-Xia Chen

College of Pharmaceuticals \& Biotechnology, Tianjin University, Tianjin 300072, People's
Republic of China

Correspondence e-mail: cpzyyan@hotmail.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.042$
$w R$ factor $=0.107$
Data-to-parameter ratio $=13.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[(2-Chlorophenyl)(4-chlorophenylimino)methyl]ferrocene

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}\right)\right]$, a new Schiff base containing a ferrocenyl (Fc) group, has been synthesized and characterized structurally. The compound is a trans isomer. The $\mathrm{C}_{\mathrm{Fc}}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ linkage has a near-planar geometry, indicating conjugation. There are no obvious intermolecular interactions.

Comment

Some Schiff bases bearing a ferrocenyl group, and their complexes, are excellent non-linear optical materials and liquid crystals (Colbert et al., 1995) because of their strong electron donors and electron-flow bridges. In the course of our investigation of the coordination of Schiff bases with transition metal salts, we observed that the title compound, (I), coordinates readily with $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}$ salts. The crystal structure of (I) is reported here (Fig. 1).

(I)

In (I), the N1-C1 bond length [1.259 (4) \AA] confirms that it is a $\mathrm{C}=\mathrm{N}$ double bond. The torsion angle $\mathrm{C} 6-\mathrm{C} 10-\mathrm{C} 11-$ N 1 is $175.1(3)^{\circ}$, indicating that the imino group is nearly in the plane of the substituted cyclopentadienyl ring. There are no obvious intermolecular interactions.

Experimental

[(4-Anilinylimino)2-chlorophenylmethyl]ferrocene (4.14 g, $0.010 \mathrm{~mol})$ was dissolved in anhydrous acetonitrile (100 ml) and added dropwise to a rapidly stirred mixture of tert-butyl nitrite $(1.55 \mathrm{~g}, 0.015 \mathrm{~mol})$ and anhydrous copper(II) chloride $(1.36 \mathrm{~g}$, $0.010 \mathrm{~mol})$ in acetonitrile (20 ml). After 10 h , the reaction mixture was poured into 20% aqueous hydrochloric acid $(100 \mathrm{ml})$. The aqueous acetonitrile mixture was extracted twice with 50 ml portions of ether, the combined ether solution was dried over anhydrous magnesium sulfate, and the ether was removed under reduced pressure. The solid residue was crystallized from ethyl acetate and petroleum ether (1:1) (333-363 K). Analysis calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{FeN}$: C 63.63, H 3.95, N 3.23\%; found: C 63.25, H 4.01, N 3.12%.

Received 31 October 2005 Accepted 22 November 2005 Online 7 December 2005

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}\right)\right]$
$M_{r}=434.13$
Monoclinic, $P 2_{1} / n$
$a=8.226$ (3) \AA
$b=17.288$ (6) \AA
$c=13.996$ (5) \AA
$\beta=103.820$ (6) ${ }^{\circ}$
$V=1932.8(11) \AA^{3}$
$Z=4$

$D_{x}=1.492 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 2747
reflections
$\theta=2.8-23.1^{\circ}$
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, red
$0.22 \times 0.18 \times 0.12 \mathrm{~mm}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.720, T_{\text {max }}=0.880$
10709 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.107$
$S=1.04$
3918 reflections
284 parameters
H -atom parameters constrained
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0445 P)^{2}\right. \\ & +0.4751 P]\end{aligned}$ $+0.4751 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$ 。
$\Delta \rho_{\max }=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 11$	$1.259(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.469(4)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.413(4)$	$\mathrm{C} 11-\mathrm{C} 18$	$1.510(4)$
$\mathrm{C} 6-\mathrm{C} 10$	$1.431(4)$		
			$123.1(3)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 12$	$123.3(3)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 18$	$120.5(3)$
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$119.2(3)$	$\mathrm{C} 17-\mathrm{C} 12-\mathrm{N} 1$	
			$-99.2(4)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$-174.0(3)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$81.1(4)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 18$	$16.9(5)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 19$	
$\mathrm{C} 6-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1$	$175.1(3)$		

The C18-C23 benzene ring is disordered over two sites. The two components were refined as rigid ideal hexagons with $\mathrm{C}-\mathrm{C}=1.39$ Å.

Figure 1
The structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. H atoms are shown as small spheres of arbitrary radii. Only one disorder component is shown.

The site occupancy factors are 0.609 (3) and 0.391 (3). All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Colbert, M. C. B., Hodgson, D., Lewis, J., Raithby, P. R. \& Long, N. J. (1995). Polyhedron, 14, 2759-2766.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXS97. University of Göttingen, Germany.

